Adversarial examples (对抗样本)

2019/11/2 Made by Shen Haojing & Chen Sihong

- 1. What's adversarial examples?
- 2. The meaning for studying adversarial examples.
- 3. Taxonomy of attacks
- 4. Taxonomy of defenses
- 5. Challenges in the future

1. What's adversarial examples?

- Adversarial examples (对抗样本) are imperceptible (不可察觉) to human but can easily fool deep neural networks in the testing stage.
- As a box-constrained optimization problem :

 $\begin{array}{c|c} \min_{x'} & \|x'-x\| \\ s.t. & f(x') = l', \\ & f(x) = l, \\ & l \neq l', \\ & x' \in [0,1], \end{array}$ $\begin{array}{c|c} & & & & \\$

2. The meaning for studying adversarial examples

- One of the major risks for applying deep neural networks in safety-critical environments.
- Help us more deeply understand the neural networks. From inspecting adversarial examples, we may gain insights on semantic inner levels of neural networks and problematic decision boundaries.[34]

Help to increase robustness and performance!

3. Taxonomy (分类) of adversarial attacks

- Adversary's Knowledge
 - 1. White-box attacks
 - 2. Black-box attacks
- Adversarial Specificity
 - Targeted attacks
 Non-targeted attacks
- Attack Frequency
 - 1. One-time attacks
 - 2. Iterative attacks

				Target Classification (L_0)							
		0	1	2	3	4	5	6	7	8	9
	0	0	٥	٥	٥	٥	٥	0	٥	٥	0
	-	ŀ	/	ţ	ţ	ţ.	f	ŧ	/	ł	ţ
uc	0	2	2	2	2	2	Z.	2	2	2.	2.
îcatio	З	Э	С	Э	Э	Э	С	Э	Э	Э	Э
lassif	4	4	4	Ц	4	4	ų	ų	Ц	4	4
Ce C	5	$\boldsymbol{\zeta}$	5	Ş	$\boldsymbol{\varsigma}$	5	5	5	\$	5	Ş
Sour	9	6	6	6	6	ŧ0	Ø	6	6	6	6
	Г	7	7	7	7	7	7	7	7	1	7
	8	8	8	8	S	F	S	S	8	8	Ş
	6	4	٩	٩	٩	٩	٩	٩	\$	٩	٩

• L-BFGS Attack

Szegedy et al. firstly introduced adversarial examples against deep neural networks in 2014[19]

- Fast Gradient Sign Method (FGSM) Goodfellow et al. [69]
- Basic Iterative Method (BIM) and Iterative Least-Likely Class Method (ILLC) [20]
- DeepFool [71]
- CPPN EA Fool [83]
- C & W's Attack [86]
- Zeroth Order Optimization (ZOO) [73]
- Universal Perturbation [74]
- Feature Adversary [76]
- • • • •

Adversarial attacks

Applications	Representative	Method	
	Study		
Reinforcement	[93]	FGSM	
Learning			
	[94]	FGSM	
Generative	[95]	Feature	
Modeling		Adversary,	
		C&W	
	[96]	Feature	
		Adversary	
Face Recog-	[67]	Impersonation	
nition		& Dodging	
		Attack	
Object	[22]	DAG	
Detection			
Semantic	[22]	DAG	
Segmentation			
	[97]	ILLC	
	[98]	ILLC	

Reading Comprehension	[99]	AddSent, AddAny
	[100]	Reinforcement
		Learning
	[101]	JSMA
Malware	[102]	Reinforcement
Detection	ų <u> </u>	Learning
	[103]	GAN
	[104]	GAN
	[105]	Generic Pro-
		gramming

4. Taxonomy (分类) of Defenses

• Network Distillation (蒸馏网络)

• Adversarial training (对抗训练)

Classifier Robustifying

Defenses

• Network Distillation (蒸馏网络)

Network distillation was originally designed to reduce the size of deep neural networks by transferring knowledge from a large networks to a small one [131].

Network distillation extracted knowledge from deep neural networks to improve robustness.[126]

Defenses

• Adversarial training (对抗训练)

Training with adversarial examples is one of the countermeasures to make neural network more robust [69][127].

Adversarial training increased the robustness of neural networks for onestep attacks (FGSM) but would not help under iterative attacks (BIM and ILLC) [81]

Adversarial trained models are more robust to white-box adversarial examples than to the transferred examples. [84]

Ensembling Adversarial Training. [84]

Defenses

Classifier Robustifying

[128][129] designed robust architectures of deep neural networks to prevent adversarial examples.

5. Challenges in future

1. Transferability (转移性)

- Adversarial examples generated against a neural networks can fool the same neural networks by different dataset. [19]
- Adversarial examples generated against a neural networks can fool other networks with different architectures. [44]

2. The existence of Adversarial examples

- Data incompletion [19, 135, 123, 126]
- Model capability [44, 137, 69, 138, 76, 80]
- No robust model [36, 139, 140]

3. Robustness Evaluation

- Base-line attack
- A methodology for evaluation on the robustness of NN.

References

[19] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel- low, and R. Fergus, "Intriguing properties of neural networks," arXiv preprint arXiv:1312.6199, 2013.

[34] J. Lu, T. Issaranon, and D. Forsyth, "Safetynet: Detecting and rejecting adversarial examples robustly," ICCV, 2017.

[69] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," arXiv preprint arXiv:1412.6572, 2014.

[20] A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial examples in the physical world," arXiv preprint arXiv:1607.02533, 2016.

[71] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, "Deepfool: a sim- ple and accurate method to fool deep neural networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2574–2582

[83] A. Nguyen, J. Yosinski, and J. Clune, "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 427–436.

[86] N. Carlini and D. Wagner, "Adversarial examples are not easily detected: Bypassing ten detection methods," AISEC, 2017

[73] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, "Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models," arXiv preprint arXiv:1708.03999, 2017

References

[74] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, "Univer- sal adversarial perturbations," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[76] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, "Adversarial manipulation of deep representations," Proceedings of the International Conference on Learning Representations (ICLR), 2016.

[126] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a defense to adversarial perturbations against deep neural networks," in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 582–597

[69] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," arXiv preprint arXiv:1412.6572, 2014.

[127] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, "Learning with a strong adversary," arXiv preprint arXiv:1511.03034, 2015.

[81] A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial machine learning at scale," Proceedings of the International Conference on Learning Representations (ICLR), 2017

[84] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel, "Ensemble adversarial training: Attacks and defenses," arXiv preprint arXiv:1705.07204, 2017.

[128] J. Bradshaw, A. G. d. G. Matthews, and Z. Ghahramani, "Adversarial examples, uncertainty, and transfer testing robustness in gaussian process hybrid deep networks," arXiv preprint arXiv:1707.02476, 2017.

[129] M. Abbasi and C. Gagné, "Robustness to adversarial examples through an ensemble of specialists," arXiv preprint arXiv:1702.06856, 2017.